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CHARACTERISTIC FEATURES OF
EXTENDED THERMODYNAMICS OF DENSE GASES

TAKASHI ARIMA a AND MASARU SUGIYAMA a∗

ABSTRACT. A recently-developed theory of extended thermodynamics of dense gases
is reviewed and its characteristic features are discussed. The discussion is made in the
following four cases separately: (i) Rarefied monatomic gases, (ii) rarefied polyatomic
gases, (iii) dense monatomic gases, and (iv) dense polyatomic gases. In particular, for
rarefied polyatomic gases, we exemplify the validity of the theory through comparing the
dispersion relation for sound with experimental data.

Dedicated to Prof. Giuseppe Grioli
on the occasion of his 100th birthday.

1. Introduction

In an endeavor to understand ubiquitous nonequilibrium phenomena, a number of ther-
modynamic theories have been proposed and developed. Among others, thermodynamics
of irreversible processes (TIP), which adopts the assumption of local equilibrium as one of
the essential theoretical ingredients, is well-known owing to its systematic and comprehen-
sive theoretical structure [1]. The Navier-Stokes Fourier (NSF) theory for fluids [1, 2] is a
typical one. TIP has repeatedly demonstrated its practical usefulness in various situations.
From a theoretical point of view, however, it involves a serious problem, that is, the prob-
lem of infinite speed of disturbances, which is sometimes called symbolically the paradox
of heat conduction, due to the parabolic character of the basic equations with spatially
non-local constitutive equations [3]. To avoid this difficulty, extended thermodynamics
(ET) [4, 5] basing on a hyperbolic system of field equations was conceived. ET is applica-
ble to highly nonequilibrium phenomena with steep gradients in space and rapid changes
in time out of local equilibrium by adopting dissipative fluxes as independent fields and
the spatio-temporally local constitutive equations. Such constitutive equations are severely
restricted by imposing the universal physical principles; Entropy principle, Causality, and
Objectivity, details of which will be explained below.

In the early stage of ET, a theory for rarefied monatomic gases was developed [6]. For
example, the ET theory of rarefied monatomic gases with 13 fields is a theory of 13 inde-
pendent fields; mass density, momentum density, momentum flux, and energy flux [4, 6].
By the use of the proper constitutive equations compatible with the universal physical
principles, a closed system of field equations is obtained. A remarkable point is that the
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A1-2 T. ARIMA AND M. SUGIYAMA

constitutive equations can be explicitly determined from the equilibrium caloric and ther-
mal equations of state. It is shown that the NSF theory comes out as a limiting case of ET
through carrying out the Maxwellian iteration [7]. The closed system of field equations is
totally consistent with the counterpart system of the moments in the kinetic theory [8].

After the establishment of ET of rarefied monatomic gases, there appeared many studies
of ET for rarefied polyatomic gases [9, 10, 11] and also for dense gases [12, 13, 14, 15, 16].
In contrast to ET of rarefied monatomic gases, in these theories, there exists a fatal diffi-
culty that the constitutive equations can not be determined in a fully explicit way from
the caloric and thermal equations of state. There remain many phenomenological con-
stants in the constitutive equations that are impossible to be evaluated experimentally or
theoretically. Finally, in 2011, an ET theory of dense gases that successfully overcomes
the difficulty is developed [17]. Needless to say, the theory is applicable also to rarefied
monatomic and polyatomic gases because these gases can be regarded as the special ones
of dense gases.

The purpose of the present paper is to review this new theory briefly (section 2) and to
discuss its characteristic features (section 3). The discussion will be made in the following
four cases separately: (i) Rarefied monatomic gases, (ii) rarefied polyatomic gases, (iii)
dense monatomic gases, and (iv) dense polyatomic gases.

For convenience we here summarize some notations used throughout the paper:
(a) A dot on a generic quantity ψ represents the material time derivative:

ψ̇ ≡ ∂ψ

∂t
+ vi

∂ψ

∂xi
,

where t is the time, xi is the position, and vi is the velocity.
(b) Parentheses around a set of N indices represent the symmetrization, that is, the sum
over all N ! permutations of the indices divided by N !. For example,

a(ibj) =
1

2!
(aibj + ajbi).

(c) Angular brackets denote the symmetric traceless part (deviatoric part). For example,

a⟨ij⟩ = a(ij) −
1

3
akkδij .

2. Extended Thermodynamics of Dense Gases

In this section, we show the essence of the ET theory of dense gases [17].

2.1. Independent fields and balance equations. The theory of ET of dense gases adopts
the 14 independent fields:

mass density: F (= ρ),

momentum density: Fi (= ρvi),

energy density: Gii,

momentum flux: Fij ,

energy flux: Gppi.

(1)
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CHARACTERISTIC FEATURES OF EXTENDED THERMODYNAMICS OF DENSE GASES A1-3

Time evolution of the fields is governed by the following balance equations:

∂F

∂t
+
∂Fk

∂xk
= 0,

∂Fi

∂t
+
∂Fik

∂xk
= 0,

∂Fij

∂t
+
∂Fijk

∂xk
= Pij ,

∂Gii

∂t
+
∂Giik

∂xk
= 0,

∂Gppi

∂t
+
∂Gppik

∂xk
= Qppi,

(2)

where Fijk and Gppik are the fluxes of Fij and Gppi, respectively, and Pij and Qppi are
the productions with respect to Fij and Gppi, respectively. The balance equations of F, Fi

and Gii are, respectively, the conservation laws of mass, momentum and energy, therefore
their productions vanish. It is noteworthy that there are two parallel series in the balance
equations; the one starts from the balance equation with the mass density (F -series) and the
other from the balance equation with the energy density (G-series). In each series, the flux
in one equation becomes the density in the next equation. In the case of rarefied polyatomic
gases, this structure of the balance equations emerges naturally for the moments defined in
the kinetic theory [18, 19].

We need the constitutive equations in order to set up the closed system of field equations.
We assume that the constitutive quantities at one point and time depend on the independent
fields at that point and time. The restrictions we impose upon the constitutive equations
come from the following universal physical principles [4]:
Entropy principle: All solutions of the system of field equations must satisfy the entropy
balance with a non-negative entropy production Σ:

∂h

∂t
+
∂hi
∂xi

= Σ ≧ 0, (3)

where h is the entropy density and hi is the entropy flux, both of which are constitutive
quantities.
Causality: This requires the concavity of the entropy density and guarantees the hyperbol-
icity of the system of field equations. 1 This also ensures the well-posedness (local in time)
of a Cauchy problem and the finiteness of the propagation speeds of disturbances.
Objectivity: The proper constitutive equations are independent of an observer. The mate-
rial frame indifference principle together with the requirement of the Galilean invariance
of balance laws constitute the so-called objectivity principle (the principle of relativity).

Let us make clear the velocity dependence of the fields by the Galilean invariance. We
firstly decompose the fluxes into the convective and non-convective parts such that

Fi1···ink = Fi1···invk +Hi1···ink,

Gi1···ink = Gi1···invk + Ji1···ink,

hi = hvi + φi.

1The entropy density used in the mathematical community has usually opposite sign to the present entropy density.
As a consequence, they speak about convexity instead of concavity.
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In particular, the quantities Fijk andGppik are decomposed such that Fijk = Fijvk+Hijk

and Gppik = Gppivk + Jppik. Then we have the following assertion: As the entropy
inequality (3) should be invariant under the Galilean transformation [20], h and φi do
not depend on the velocity. Similarly, because of the Galilean invariance of the balance
equations (2), the velocity dependence of the quantities is expressed as

Gii = ρvivi +mii,

Fij = ρvivj +Mij ,

Gppi = ρvpvpvi +mppvi + 2Mpivp +mppi,

Hijk = 2v(iMj)k +Mijk,

Jppik = 3v(pvpMi)k + 2vpMpik + vimppk +mppik,

Qppi = Qi + 2vpPpi,

(4)

wheremii, Mij , mppi, Mijk andmppik do not depend on the velocity, and the productions
Pij and Qi are also independent of the velocity.

From the conservation laws in (2), we can relate Mij ,mii and mppi to the following
conventional quantities:

stress: tij = −Mij (= − (p+Π) δij + S⟨ij⟩), (5)

specific internal energy: ε =
1

2ρ
mii, (6)

heat flux: qi =
1

2
mppi, (7)

where the pressure p depends only on ρ and mii, Sij is the viscous stress, and Π (≡
−Sii/3) is the dynamic pressure.

2.2. Constitutive equations. Through the well-established procedures in ET called the
constitutive theory [4], we obtain explicitly the constitutive equations. The linear constitu-
tive equations, in particular, are summarized as follows:

Miik = 3Lqk,

M⟨ij⟩k = Kq⟨iδj⟩k,

mppik =


β1 +


h4
2h2


L− 1

ρ


∂p

∂T


ρ


∂ε

∂T

−1

ρ


+ 2


ε+

p

ρ


Π


δik

−

h4
2h3

K + 2


ε+

p

ρ


S⟨ik⟩,

(8)
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where T is the temperature. The coefficients h2, h3, h4, L and K are the functions of ρ
and T given by

h2 = −5

6
Tp+

ρT

2


∂p

∂ρ


T

+
T 2

2ρ


∂p

∂T

2

ρ


∂ε

∂T

−1

ρ

,

h3 = −Tp, h4 = 2T 2


ε+

p

ρ


∂p

∂T


ρ

− T 2


∂β1
∂T


ρ

,

L =
1

h4


β2 − 4h2


ε+

p

ρ


, K =

1

h4


β3 − 4h3


ε+

p

ρ


.

(9)

And the quantities β1, β2 and β3 satisfy the following relations:
∂β1
∂ρ


T

= 2


ε+

p

ρ


∂p

∂ρ


T

,
∂β2
∂ρ


T

=
5

6


∂β3
∂ρ


T

+
∂

∂ρ


4


ε+

p

ρ


h2 −

5

6
h3


,

∂β3
∂ρ


T

= −4T


ε+ 2

p

ρ


∂p

∂ρ


T

,
∂β2
∂T


ρ

=
2

3T
β2 +

10

9T
β3 +

5

3T
h4 −

ρ

T


∂h4
∂ρ


T

− h2


8

3T


ε+

p

ρ


− 4

ρ


∂p

∂T


ρ



+ 4


ε+

p

ρ


10

9
p+


∂h2
∂T


ρ


,

∂β3
∂T


ρ

=
2

T
β2 +

1

3T
β3 +

2

T
h4 − 8


ε+

p

ρ


p

3
+
h2
T


− 4T


ε+ 2

p

ρ


∂p

∂T


ρ

.

(10)

Then β1, β2 and β3 are determined explicitly by the integration of Eq. (10), where we
assume that the integration constants vanish. This assumption is consistent with the result
from the kinetic theory. Then we have the relation L = 5

6K. By using the equilibrium
thermal and caloric equations of state (p = p̂(ρ, T ) , ε = ε̂(ρ, T )), we can derive uniquely
the explicit expressions of these coefficients.

The linear constitutive equations of the productions may be expressed as

P⟨ij⟩ = − σ

2h3
S⟨ij⟩, Pii =

3ζ

2h2
Π, Qi =

τ

h4
qi, (11)

where σ, ζ and τ are positive, and are the functions of ρ and T .

2.3. Concavity of the entropy density and causality. With the linear constitutive equa-
tions (8), the entropy density and the entropy flux are expressed as

h = hE +
1

4h2
Π2 +

1

4h3
S⟨ij⟩S⟨ij⟩ +

1

h4
qiqi, (12)

φk =
1

T
qk +

1

2h2


L− 1

ρ


∂p

∂T


ρ


∂ε

∂T

−1

ρ


Πqk − K

2h3
qiS⟨ik⟩, (13)
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where hE is the entropy density at a reference equilibrium state.
The system (2) must be symmetric hyperbolic so as to ensure the causality. Near equilib-

rium this requirement corresponds to the condition of the concavity of the entropy density
[4, 21]. As the second derivative of the entropy density h near equilibrium is given by

d2h = d2hE +
1

4h2
(dΠ)2 +

1

4h3
dS⟨ij⟩dS⟨ij⟩ +

1

h4
dqidqi, (14)

the concavity condition is expressed by the following set of inequalities:

p > 0,


∂ε

∂T


ρ

> 0,


∂p

∂ρ


T

> 0, h2 < 0, h4 < 0. (15)

2.4. Closed system of field equations. By substituting the constitutive equations (8) into
(2) with (4), the closed system of field equations is given by

ρ̇+ ρ
∂vk
∂xk

= 0,

ρv̇i +
∂p

∂xi
+
∂Π

∂xi
−
∂S⟨ij⟩

∂xj
= 0,

ρ


∂ε

∂T


ρ

Ṫ +


p+Π− ρ2


∂ε

∂ρ


T


∂vk
∂xk

− ∂vi
∂xk

S⟨ik⟩ +
∂qk
∂xk

= 0,

Ṡ⟨ij⟩ − 2p
∂v⟨i

∂xj⟩
+ S⟨ij⟩

∂vk
∂xk

− 2Π
∂v⟨i

∂xj⟩
+ 2

∂v⟨i

∂xk
S⟨j⟩k⟩

+ CS1
∂ρ

∂xk
q⟨iδj⟩k + CS2

∂T

∂xk
q⟨iδj⟩k + CS3

∂q⟨i

∂xj⟩
= − 1

τS
S⟨ij⟩,

Π̇ + (CΠ1 + CΠ2Π)
∂vk
∂xk

+ CΠ3

∂v⟨i

∂xk⟩
S⟨ik⟩ + CΠ4qk

∂ρ

∂xk

+ CΠ5qk
∂T

∂xk
+ CΠ6

∂qk
∂xk

= − 1

τΠ
Π,

q̇i + Cq1qi
∂vk
∂xk

+ Cq2qk
∂vk
∂xi

+ Cq3qk
∂vi
∂xk

+ Cq4
∂T

∂xi
+ Cq5

∂Π

∂xi
+ Cq6

∂S⟨ik⟩

∂xk

+Π


Cq7

∂ρ

∂xi
+ Cq8

∂T

∂xi
− 1

ρ

∂Π

∂xi
+

1

ρ

∂S⟨ik⟩

∂xk


− S⟨ik⟩


Cq9

∂ρ

∂xk
+ Cq10

∂T

∂xk
− 1

ρ

∂Π

∂xk
+

1

ρ

∂S⟨jk⟩

∂xj


= − 1

τq
qi,

(16)

where the coefficients CSa(a = 1, 2, 3), CΠb(b = 1, · · · , 6) and Cqc(c = 1, · · · , 10), and
the relaxation times τS , τq, τΠ are the functions of ρ and T . With h2, h3, h4, L and K,
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these are expressed as

CS1 = −

∂K

∂ρ


T

, CS2 = −

∂K

∂T


ρ

, CS3 = −K,

CΠ1 = −2h2
T
, CΠ2 =

5

3
− 1

ρ


∂p

∂T


ρ


∂ε

∂T

−1

ρ

, CΠ3 = −2

3
+

1

ρ


∂p

∂T


ρ


∂ε

∂T

−1

ρ

,

CΠ4 =
5

6


∂K

∂ρ


T

, CΠ5 =
5

6


∂K

∂T


ρ

, CΠ6 =
5

6
K − 1

ρ


∂p

∂T


ρ


∂ε

∂T

−1

ρ

,

Cq1 = 1 +
K

2
, Cq2 =

K

2
, Cq3 = 1 +

K

2
, Cq4 = − h4

2T 2
,

Cq5 =
h4
4h2


5

6
K − 1

ρ


∂p

∂T


ρ


∂ε

∂T

−1

ρ


, Cq6 = − h4

4h3
K,

Cq7 =


∂ε

∂ρ


T

− p

ρ2
+


∂Cq5

∂ρ


T

, Cq8 =


∂ε

∂T


ρ

+


∂Cq5

∂T


ρ

,

Cq9 =


∂ε

∂ρ


T

− p

ρ2
−

∂Cq6

∂ρ


T

, Cq10 =


∂ε

∂T


ρ

−

∂Cq6

∂T


ρ

.

(17)

And, for the relaxation times, we have

τS = −2h3
σ
, τΠ = −2h2

ζ
, τq = −2h4

τ
.

By carrying out the Maxwellian iteration [4, 7], these are related to the shear viscosity µ,
bulk viscosity ν, and heat conductivity κ as follows:

µ = pτS , ν = −2h2
T
τΠ, κ = − h4

2T 2
τq. (18)

To sum up, we have indeed obtained explicitly the closed system of field equations with
the knowledge of the thermal and caloric equations of state, and also the shear viscosity,
bulk viscosity and heat conductivity.

3. Characteristic Features of the Theory

As shown above, the thermal and caloric equations of state play a crucial role in the ET
theory of dense gases. In general, the equations of state can be expressed as

p = pideal(ρ, T ) + pϕ(ρ, T ), ε = εideal(T ) + εϕ(ρ, T ), (19)

where pideal and εideal are, respectively, the pressure and the specific internal energy in a
rarefied gas limit. In a dense gas, as the average distance between the constituent molecules
is finite, the interaction between the molecules also contributes to both the pressure and the
specific internal energy, which are denoted by pϕ and εϕ. Furthermore, εideal can be
divided into two parts:

εideal = εtrans(T ) + εint(T ),

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 91, Suppl. No. 1, A1 (2013) [15 pages]



A1-8 T. ARIMA AND M. SUGIYAMA

where εtrans and εint are the specific internal energies due to, respectively, the molecular
translational modes and the internal modes of a molecule such as rotational and vibrational
modes. Between p and ε, there is a relation, so-called Gibbs relation:

∂ε

∂ρ


T

=
1

ρ2


p− T


∂p

∂T


ρ


. (20)

Owing to the general character of the equations of state mentioned above, we have the
following four disjoint CASEs 1-4:

CASE 1: Rarefied monatomic gases (pϕ = 0, εint = 0, εϕ = 0),
CASE 2: Rarefied polyatomic gases (pϕ = 0, εint ̸= 0, εϕ = 0),
CASE 3: Dense monatomic gases (pϕ ̸= 0, εint = 0 εϕ ̸= 0),
CASE 4: Dense polyatomic gases (pϕ ̸= 0, εint ̸= 0 εϕ ̸= 0).

Any gas belongs to one of the cases. See also Fig.1.
An advantage of this classification is that the effect of the internal modes of a molecule

on nonequilibrium phenomena in a gas can be analyzed clearly by comparing the results
of CASE 1 and CASE 2 (or of CASE 3 and CASE 4). In a similar way, the effect of the
inter-molecular potential, for example, can be analyzed by comparing the results of CASE
1 and CASE 3 (or of CASE 2 and CASE 4). CASE 1 has already been fully developed [4],
while CASEs 2-4 are those to be explored by the present ET theory of dense gases.

Rarefied monatomic(CASE 1) Dense monatomic(CASE 3)
Rarefied polyatomic(CASE 2) Dense polyatomic(CASE 4)

Figure 1. Any gas belongs to one of the CASEs 1-4. The darker part is an
unexplored territory and is expected to be studied by the present ET theory of
dense gases.

In this section, we discuss the characteristic features of the present theory in CASEs 1-4
separately.

3.1. CASE 1: Rarefied monatomic gases. The equations of state are given by

p = pideal(ρ, T ), ε = εtrans(T ), (21)

and there is a relationship between p and ε:

3p = 2ρε.
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For classical gases, in particular, we have

p =
kB
m
ρT, ε =

3

2

kB
m
T,

where kB and m are, respectively, the Boltzmann constant and the mass of a molecule. We
may utilize these equations of state to obtain the system of field equations in CASE 1.

Let us discuss a subtle point in the system thus obtained. Equation (16)5 is now reduced
to Π = 0 as is expected for rarefied monatomic gases, and it plays no more role. The
theory, therefore, becomes singular because of the change of the system itself, that is, the
change from 14 equations to 13 equations. Furthermore, as Gii is congruent with Fii in
this case, the G-series merges with F -series. As a result we have the following system of
field equations:

∂F

∂t
+
∂Fk

∂xk
= 0,

∂Fi

∂t
+
∂Fik

∂xk
= 0,

∂Fij

∂t
+
∂Fijk

∂xk
= P⟨ij⟩,

∂Fppi

∂t
+
∂Fppik

∂xk
= Pppi,

(22)

where Fppik and Pppi are the flux and production of Fppi, respectively. This is exactly
the same as that of ET of rarefied monatomic gases [4]. In conclusion, the system of
field equations (16) for dense gases contains the system of 13 field equations for rarefied
monatomic gases as a special case in a singular way.

3.2. CASE 2: Rarefied polyatomic gases. The equations of state, when the temperature
is not extremely low, are expressed as

p =
kB
m
ρT, ε =

3

2

kB
m
T + εint(T ).

It may be useful to introduce the specific heat cv = dε/dT , which, in general, depends on
the temperature. Then we obtain the system of field equations for non-polytropic gases.

It can be proved that the system of field equations in CASE 2 is fully consistent with
the system derived from a kinetic model for diatomic gases [22] and from the kinetic
theory with the maximum entropy principle [23, 24, 25, 26] for polyatomic gases. This
consistency is, of course, vitally important for the validity test of the theory of dense gases
itself as a necessary condition. The detailed study of such an interrelationship between ET
and the kinetic theory must be a promising new direction in the future research.

In what follows in this subsection, we discuss an experimental verification of the present
theory [28].

3.2.1. A test of the ET theory for rarefied polyatomic gases : Dispersion relation for
sound. In order to obtain the dispersion relation for weak sound, we decompose the in-
dependent variable u = (ρ, vi, T, S⟨ij⟩,Π, qi)

T into the equilibrium state vector at a refer-
ence equilibrium, u0 = (ρ0, 0, T0, 0, 0, 0)

T , and the deviation from the equilibrium state,
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A1-10 T. ARIMA AND M. SUGIYAMA

ū = (ρ̄, v̄i, T̄ , S̄⟨ij⟩, Π̄, q̄i)
T , as follows:

u = u0 + ū. (23)

We study a plane longitudinal wave propagating in the x-direction with the frequency
ω and the complex wave number k = kr + iki (kr = ℜ(k), ki = ℑ(k)) such that

ū = wei(ωt−kx) (24)

with w being a constant amplitude vector. Then v̄i, S̄⟨ij⟩ and q̄i are expressed as

v̄i ≡

 v̄
0
0

 , S̄⟨ij⟩ ≡

 S̄ 0 0
0 − 1

2 S̄ 0
0 0 − 1

2 S̄

 , q̄i ≡

 q̄
0
0

 . (25)

The dispersion relation is explicitly given by

c∗v(c0z)
4

3Ω2 (1 + c∗v)
2


−3

1 + c∗v
τps

− iΩ


5c∗v +

3 + 7c∗v
τps


+ 9Ω2c∗v


+

(c0z)
2

3Ω3(1 + c∗v)
2


− 3i

(1 + c∗v)
2

τqsτps
+Ω(1 + c∗v)


5c∗v
τqs

+ 6
1 + c∗v
τps

+
3 + 7c∗v
τqsτps



+ iΩ2


c∗v (13 + 8c∗v) + 9c∗v

1 + c∗v
τqs

+
6 + 20c∗v + 10c∗v

2

τps


− 3Ω3c∗v (7 + 4c∗v)



+
(Ω− i)(τpsΩ− i)(τqsΩ− i)

Ω3τpsτqs
= 0,

(26)

where

z =
k

ω
, c∗v =

(cv)0
kB/m

, Ω = (τS)0ω,

τqs =


τq
τS


0

= (1 + c∗v)
−1 κ

µkB/m
, τps =


τΠ
τS


0

=


2

3
− 1

c∗v

−1
ν

µ
,

(27)

and c0 is the sound speed:

c0 =

∂p
∂ρ


0

+
T0


∂p
∂T

2
0

ρ20

∂ε
∂T


0

=


aT0


1 +

1

c∗v


. (28)

Here the suffix 0 indicates the values at the reference equilibrium state. Therefore, for given
c∗v , τqs and τps, the quantity c0z(= c0k/ω) is calculated from Eq. (26) as the function of
Ω (= (τS)0ω). The phase velocity vph and the attenuation factor α are derived from the
relations:

vph(ω) =
ω

ℜ(k)
=

1

ℜ(z)
, α(ω) = −ℑ(k) = −ωℑ(z). (29)

From Eq. (27), with the help of the experimental data on µ, κ and ν, we can estimate the
values of τqs and τps. However, at present, as we have reliable data only on µ and κ [30],
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we adopt, in the analysis below, an adjustable parameter:

φ =
ν

µ
. (30)

In Fig. 2, we show the phase velocity and the attenuation factor for normal hydrogen
(n-H2) gases derived from the ET theory and the NSF theory at T0 = 293K, and also the
experimental data on the phase velocity at T0 = 273.5, 296.8K by Rhodes [29] and on the
attenuation factor at T0 = 293K by Sluijter et al. [30]. Here we estimated the values of
c∗v with the help of statistical mechanics [31, 32]. The values of µ and κ are adopted from
experimental data [30]. At T0 = 293K, the adopted values are as follows: c∗v = 2.45,
c0 = 1300 [m/s], µ = 8.82 [µPa·s], κ = 182 [mW/(m·K)] and τqs = 1.46.

In the region with small Ω the predictions by ET and NSF coincide with each other and
φ is selected to be 37 to fit these results with the experimental data. Therefore ν = 326
[µPa·s] and τps = 144. When Ω becomes large the prediction by the ET theory is evidently
superior to that by the NSF theory. The difference between the two theories emerges around
Ω = ω(τS)0 = 10−3. The ET theory exhibits its good fitting with experimental data up
until Ω = 10−1.
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Figure 2. Dependence of the dimensionless phase velocity vph/c0 (left) and the
attenuation factor c0(τS)0α (right) on the dimensionless frequency Ω for n-H2

gases. The squares and triangles in the left figure are the experimental data at
T0 = 273.5 and 296.8K, respectively, by Rhodes [29], and the circles in the right
figure are those at T0 = 293K by Sluijter et al. [30]. The solid and dashed lines
are predictions at 293K by the ET and NSF theories, respectively. We adopt
φ = 37.

In Fig. 3, we show a similar comparison for para hydrogen (p-H2) gases. The experi-
mental data on the phase velocity at T0 = 273.8, 298.4K are measured by Rhodes [29] and
the attenuation factor at T0 = 293K by Sluijter et al. [30]. At T0 = 293K, the adopted val-
ues are as follows: c∗v = 2.61, c0 = 1290 [m/s], µ = 8.82 [µPa·s], κ = 192 [mW/(m·K)]
and τqs = 1.46. The selected value of the parameter φ is 31. Then, ν = 273 [µPa·s] and
τps = 109.

From these figures, we see clearly that the present theory of ET is consistent with the
experimental data even in the high frequency range where the local equilibrium assumption
is no more valid. Although the comparisons with the experimental data have been made
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Figure 3. Dependence of the dimensionless phase velocity vph/c0 (left) and the
attenuation factor c0(τS)0α (right) on the dimensionless frequency Ω for p-H2

gases. The squares and triangles in the left figure are the experimental data at
T0 = 273.8 and 298.4K, respectively, by Rhodes [29], and the circles in the right
figure are those at T0 = 293K by Sluijter et al. [30]. The solid and dashed lines
are predictions at 293K by the ET and NSF theories, respectively. We adopt
φ = 31.

only for the rarefied diatomic gases, the consistency gives us a strong confidence that the
ET theory for dense gases deserves further studies.

3.3. CASE 3: Dense monatomic gases. The CASE 3 has been little explored by ET up
to now, but is the case that is highly expected to be studied by the present ET theory. Such
a study must be challenging not only theoretically but also practically.

The equations of state are expressed as

p =
kB
m
ρT + pϕ(ρ, T ), ε =

3

2

kB
m
T + εϕ(ρ, T ). (31)

The explicit forms of pϕ and εϕ may be given in the virial expansion form. Up to the first
correction with respect to ρ, with the help of the Gibbs relation (20), we have the following
expression:

pϕ =
kB
m
TB2(T )ρ

2 +O(ρ3), εϕ = −kB
m
T 2B′

2(T )ρ+O(ρ2), (32)

where the second virial coefficient B2 is the function of the temperature T , and a prime
means a derivative with respect to T .
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Substituting the equations of state (31) with (32) into (9) and (10), we obtain the first
correction of h2, h3, h4 and K with respect to ρ:

h2 =
kB
m
T 2ρ


15B2 + 20TB′

2 + 4T 2B′′
2

18
ρ+O(ρ2)


,

h3 = −kB
m
T 2ρ(1 +B2ρ+O(ρ2)),

h4 = −

kB
m

2

T 3ρ

5 +


5B2 − T 2B′′

2


ρ+O


ρ2

,

K =
4

5
+

10TB′
2 + 4T 2B′′

2

25
ρ+O


ρ2

.

(33)

We here make only one remark. When we analyze the concavity condition (15), we find
that there is a subtle point such that the condition is not always satisfied. The hard-sphere
system with constantB2 is probably the most extreme case in the sense that the condition is
not satisfied for any ρ as far as we adopt the equations of state above. This fact is intimately
related to the singularity of the system of field equations mentioned in CASE 1 where the
dynamic pressure Π vanishes. Detailed study of such a delicate point will soon be reported
elsewhere.

3.4. CASE 4: Dense polyatomic gases. The equations of state are expressed as

p =
kB
m
ρT + pϕ(ρ, T ), ε =

3

2

kB
m
T + εint(T ) + εϕ(ρ, T ). (34)

For later convenience, we introduce

c∗videal
(T ) =

dεideal(T )

dT

kB
m

=
3

2
+

dεint(T )

dT

kB
m
. (35)

Then, with the virial expansion form (32), we have the first correction of h2, h3, h4 and K
with respect to ρ:

h2 =
kB
m
T 2ρ


3− 2c∗videal

6c∗videal

+
(c∗videal

2 + 6c∗videal
)B2 + 6(1 + c∗videal

)TB′
2 + 3T 2B′′

2

6c∗videal

2 ρ+O

ρ2
 
,

h3 = −kB
m
T 2ρ(1 +B2ρ+O(ρ2)),

h4 = −2


kB
m

2

T 3ρ


1 + c∗videal

+


(1 + c∗videal

)B2 −
1

2
T 2B′′

2


ρ+O


ρ2

,

K =
2

c∗videal
+ 1

+
(c∗videal

+ 1)TB′
2 + T 2B′′

2

(c∗videal
+ 1)2

ρ+O

ρ2

.

(36)

The CASE 4 has been totally unexplored by ET until now. This case is also highly
expected to be studied by the present ET theory.
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4. Summary

A recently-developed theory of ET of dense gases has been reviewed and its charac-
teristic features have been discussed. The discussion has been made in the CASEs 1-4
separately. We have emphasized that the last three cases are still being not fully explored
and that they can be analyzed by this new theory. This means that there are potentially
many research fields where this theory may play a crucial role. The analysis of wave prop-
agation phenomena in dense gases, for example, seems to be interesting as a next study.
The subtle point with respect to the concavity condition in the case of monatomic gases
should be also studied.
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